40. Combination Sum II
by Botao Xiao
Question:
Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
Each number in candidates may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
[1,2,2],
[5]
]
Thinking:
- Method:
- 参考39. Combination Sum.
- 因为同一个元素不能被使用两次,所以递归调用时,起始位置要跳过当前,需要+1。
- 原列表中是可以出现重复的,同一个位置相同元素只能出现一次,所以当我们加入新的元素后,要跳过其后的相同元素。
class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<>();
if(candidates == null || candidates.length == 0) return result;
Arrays.sort(candidates);
combinationSum2(candidates, target, new ArrayList<Integer>(), result, 0);
return result;
}
public void combinationSum2(int[] candidates, int target, List<Integer> list, List<List<Integer>> result, int start){
if(target == 0)
result.add(new ArrayList<Integer>(list));
else if(target < 0)
return;
else{
int pre = -1;
for(int i = start; i < candidates.length; i++){
if(pre == -1)
pre = candidates[i];
else if(candidates[i] == pre)
continue;
else pre = candidates[i];
list.add(candidates[i]);
combinationSum2(candidates, target - candidates[i], list, result, i + 1);
list.remove(list.size() - 1);
}
}
}
}
二刷
- 二刷还是借鉴了一刷的时候跳过元素的方法。
class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<>();
Arrays.sort(candidates);
backtrace(result, new ArrayList<Integer>(), candidates, target, 0, 0);
return result;
}
private void backtrace(List<List<Integer>> result, List<Integer> temp, int[] candidates, int target, int sum, int start){
if(sum == target){
result.add(new ArrayList<>(temp));
}else if(sum < target){
int used = -1;
for(int i = start; i < candidates.length; i++){
if(sum + candidates[i] > target) return;
if(used == -1) used = candidates[i];
else if(used == candidates[i]) continue;
else used = candidates[i];
temp.add(candidates[i]);
backtrace(result, temp, candidates, target, sum + candidates[i], i + 1);
temp.remove(temp.size() - 1);
}
}
}
}
Third time
class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> result = new LinkedList<>();
if(candidates == null || candidates.length == 0) return result;
Arrays.sort(candidates);
dfs(result, candidates, target, 0, new LinkedList<>(), 0);
return result;
}
private void dfs(List<List<Integer>> result, int[] candidates, int target, int sum, List<Integer> temp, int index){
if(sum == target) result.add(new LinkedList<Integer>(temp));
else if(sum < target){
for(int i = index; i < candidates.length; i++){
if(sum + candidates[i] > target) continue;
while(i < candidates.length && i > index && candidates[i - 1] == candidates[i]) i++;
if(i >= candidates.length) break;
temp.add(candidates[i]);
dfs(result, candidates, target, sum + candidates[i], temp, i + 1);
temp.remove(temp.size() - 1);
}
}
}
}
Subscribe via RSS