62. Unique Paths
by Botao Xiao
Question:
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
Thinking:
- Method:
- 对于第一列和第一行,都只可能为1,。
- 对于其余的位置,为左侧和上侧的和。因为根据运动规则,只可能是从左侧和上侧来到该位置。
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
int i = 0;
for(; i < m; i++)
dp[i][0] = 1;
for(i = 0; i < n; i++)
dp[0][i] = 1;
for(i = 1; i < m; i++)
for(int j = 1; j < n; j++)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
return dp[m-1][n-1];
}
}
二刷
二刷的时候还是用dp来做,这道题在DP中还是算作很简单的。
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
dp[0][0] = 1;
for(int i = 1; i < m; i++)
dp[i][0] = 1;
for(int i = 1; i < n; i++)
dp[0][i] = 1;
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
Subscribe via RSS