64. Minimum Path Sum
by Botao Xiao
Question:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Thinking:
- Method:
- 参考62, 63对dp的使用
class Solution {
public int minPathSum(int[][] grid) {
if(grid == null || grid.length == 0) return 0;
int height = grid.length;
int width = grid[0].length;
int[][] dp = new int[height][width];
dp[0][0] = grid[0][0];
for(int i = 1; i < height; i++)
dp[i][0] = dp[i - 1][0] + grid[i][0];
for(int i = 1; i < width; i++)
dp[0][i] = dp[0][i - 1] + grid[0][i];
for(int i = 1; i < height; i++){
for(int j = 1; j < width; j++){
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[height - 1][width - 1];
}
}
二刷
思路还是和上一道题类似,我看了一下我的解法似乎和一刷的时候是一样。
class Solution {
public int minPathSum(int[][] grid) {
if(grid == null || grid.length == 0 || grid[0].length == 0) return 0;
int height = grid.length, width = grid[0].length;
int[][] dp = new int[height][width];
dp[0][0] = grid[0][0];
for(int i = 1; i < height; i++)
dp[i][0] = dp[i - 1][0] + grid[i][0];
for(int i = 1; i < width; i++)
dp[0][i] = dp[0][i - 1] +grid[0][i];
for(int i = 1; i < height; i++){
for(int j = 1; j < width; j++){
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[height - 1][width - 1];
}
}
Subscribe via RSS