70. Climbing Stairs
by Botao Xiao
Question:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
Thinking:
- Method:
- 最经典的递归问题。
- 使用动态规划通过空间换取时间。
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
return backtrace(n - 1, dp) + backtrace(n - 2, dp);
}
private static int backtrace(int n, int[] dp){
if(n < 0) return 0;
else if(dp[n] != 0)
return dp[n];
else{
dp[n] = backtrace(n - 1, dp) + backtrace(n - 2, dp);
return dp[n];
}
}
}
- Method:
- 只使用动态规划。
- dp[n] = dp[n - 1] + dp[n - 2];
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i < n + 1; i++){
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
二刷
这道题还是比较经典的,重新分析这道题,在初始化的阶段我们只对dp[0],dp[1]初始化,而在以后的每个结果中,当前的值是由dp[i - 1]和dp[i -2]构成的,这针对了题目中,只能跨一步或者两步的设定。 ```Java class Solution { public int climbStairs(int n) { int[] dp = new int[n + 1]; dp[0] = 1; dp[1] = 1; for(int i = 2; i <= n; i++){ dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; } }
Subscribe via RSS