72. Edit Distance
by Botao Xiao
Question
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
Thinking:
- Method 1:dp dp[i][j]表示使从0开始到s1[i], s2[j]相同的最小步骤。
- 初始化
- 当i = 0时,dp[0][j] = j, 说明要添加j个元素才能使得s1[0], s2[j]相同。
- 当j = 0时,dp[i][0] = i, 说明要从s1中删除i个元素才能变成s2[j].
- 当求dp[i][j]时,取下列三个操作的最小值:
- replace操作
- s1[i] = s2[j]: dp[i - 1][j - 1], 说明前一位也是相同的,当前位也是相同的,不需要任何操作。
- s1[i] != s2[j]: 当前位不相同,而dp[i - 1][j - 1]说明到前一位是相同的,我们只需要修改s1,s2的当前位。
- dp[i - 1][j] + 1, s1的前一位已经和当前位相同了,我们需要删除当前的元素。
- dp[i][j - 1] + 1, 说明s2的前一位已经和当前位相同了,我们需要在s1中插入s2的当前位。
- replace操作
- 初始化
class Solution {
public int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for(int i = 0; i < len1; i++)
dp[i + 1][0] = i + 1;
for(int i = 0; i < len2; i++)
dp[0][i + 1] = i + 1;
for(int i = 1; i <= len1; i++){
char c1 = word1.charAt(i - 1);
for(int j = 1; j <= len2; j++){
char c2 = word2.charAt(j - 1);
if(c1 == c2){
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
}else
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
return dp[len1][len2];
}
}
二刷
还是一刷时候的思路,如果面试应该能写出来。
class Solution {
public int minDistance(String word1, String word2) {
int len1 = word1.length(), len2 = word2.length();
char[] arr1 = word1.toCharArray();
char[] arr2 = word2.toCharArray();
int[][] dp = new int[len1 + 1][len2 + 1];
for(int i = 1; i <= len1; i++)
dp[i][0] = i;
for(int j = 1; j <= len2; j++)
dp[0][j] = j;
for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if(arr1[i - 1] == arr2[j - 1]){
dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1] + 1), dp[i - 1][j] + 1);
}else{
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
}
return dp[len1][len2];
}
}
Subscribe via RSS