279. Perfect Squares
by Botao Xiao
279. Perfect Squares
Question
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.
Example 1:
Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.
Thinking:
- Method 1: dp
class Solution {
public int numSquares(int n) {
int[] dp = new int[n + 1];
for(int i = 1; i <= n; i++){
int res = Integer.MAX_VALUE;
for(int j = 1; j * j <= i; j++){
res = Math.min(res, dp[i - j * j] + 1);
}
dp[i] = res;
}
return dp[n];
}
}
Second time
- Method 1 dp
- Set all integer squares smaller than n to 1.
- Initial all other values to MAX_VALUE.
- for each number, if dp[i] == 1, skip, else check all add combination of the values and take the minimum value.
class Solution { public int numSquares(int n) { int[] dp = new int[n + 1]; for(int i = 0; i <= n; i++){ dp[i] = Integer.MAX_VALUE; } for(int i = 1; i * i <= n; i++){ dp[i * i] = 1; } for(int i = 2; i <= n; i++){ if(dp[i] == 1) continue; for(int j = i / 2; j >= 1; j--){ dp[i] = Math.min(dp[i], dp[j] + dp[i - j]); } } return dp[n]; } }
- Method 2 dp
class Solution { public int numSquares(int n) { int[] dp = new int[n + 1]; for(int i = 1; i <= n; i++){ int res = Integer.MAX_VALUE; for(int j = 1; j * j <= i; j++) res = Math.min(res, dp[i - j * j] + 1); dp[i] = res; } return dp[n]; } }
Subscribe via RSS