923. 3Sum With Multiplicity
by Botao Xiao
923. 3Sum With Multiplicity
Question
Given an integer array A, and an integer target, return the number of tuples i, j, k such that i < j < k and A[i] + A[j] + A[k] == target.
As the answer can be very large, return it modulo 10^9 + 7.
Example 1:
Input: A = [1,1,2,2,3,3,4,4,5,5], target = 8
Output: 20
Explanation:
Enumerating by the values (A[i], A[j], A[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.
Example 2:
Input: A = [1,1,2,2,2,2], target = 5
Output: 12
Explanation:
A[i] = 1, A[j] = A[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.
Note:
- 3 <= A.length <= 3000
- 0 <= A[i] <= 100
- 0 <= target <= 300
Solutions:
- Method 1: TLE
class Solution { public int threeSumMulti(int[] A, int target) { int len = A.length; long res = 0; Arrays.sort(A); //O(nlgn) for(int i = 0; i < len - 2; i++){ //O(nlgn) int t = target - A[i]; int slow = i + 1, fast = len - 1; while(slow < fast){ int sum = A[slow] + A[fast]; if(sum < t){ slow++; }else if(sum > t){ fast--; }else{ //first move the fast pointer. int originalFast = fast; while(slow < fast && A[slow] + A[fast] == t){ res++; fast--; } fast = originalFast; slow++; } } } return (int)(res % (1_000_000_007)); } }
- Method 2: O(n^2 + n)
class Solution { public int threeSumMulti(int[] A, int target) { int len = A.length; long res = 0L; long[] map = new long[101]; for(int a : A){ map[a]++; } for(int i = 0; i <= 100; i++){ for(int j = i; j <= 100; j++){ int c = target - i - j; if(c < j || c > 100 || map[i] == 0 || map[j] == 0 || map[c] == 0) continue; if(i == j && j == c) res += (map[i] * (map[i] - 1) * (map[i] - 2) / 6); else if(i == j) res += map[c] * map[i] * (map[i] - 1) / 2; else if(j == c) res += map[i] * map[j] * (map[j] - 1) / 2; else res += map[i] * map[j] * map[c]; } } return (int)(res % (1_000_000_007)); } }
Reference
Subscribe via RSS